DIY repair of a resant 250 welding inverter

In detail: do-it-yourself repair of a resant 250 welding inverter from a real master for the site my.housecope.com.

Once the Resant SAI 250PN welding inverter fell into my hands. The device, without a doubt, inspires respect.

Those who are familiar with the device of welding inverters will appreciate the power of the electronic filling.

As already mentioned, the filling of the welding inverter is designed for high power. This can be seen from the power section of the device.

The input rectifier has two powerful diode bridges on the radiator, and four electrolytic capacitors in the filter. The output rectifier is also complete with: 6 dual diodes, a massive choke at the output of the rectifier.

three ( ! ) soft start relay. Their contacts are connected in parallel to withstand the large current surge when welding starts.

If we compare this Resanta (Resanta SAI-250PN) and TELWIN Force 165, Resanta will give him a dashing head start.

But, even this monster has an Achilles heel.

The cooling cooler does not work;

There is no indication on the control panel.

After a cursory inspection, it turned out that the input rectifier (diode bridges) turned out to be in good order, the output was about 310 volts. Therefore, the problem is not in the power section, but in the control circuits.

External examination revealed three burned out SMD resistors. One in the gate circuit of the 47 Ohm field-effect transistor 4N90C (marking - 470), and two at 2.4 ohms (2R4) - connected in parallel - in the source circuit of the same transistor.

4N90C bipolar transistor (FQP4N90C) is controlled by a microcircuit UC3842BN... This microcircuit is the heart of the switching power supply, which powers the soft-start relay and the integrated stabilizer at + 15V. He, in turn, feeds the entire circuit, which controls the key transistors in the inverter. Here is a piece of the RESant SAI-250PN diagram.

Video (click to play).

It was also found that there is also a resistor in the power circuit of the UC3842BN (U1) ShI controller in the open circuit. In the diagram, it is designated as R010 (22 ohm, 2W). It has the reference designation R041 on the printed circuit board. I will warn you right away that it is quite difficult to detect a break in this resistor during an external examination. A crack and characteristic burns can be on the side of the resistor that faces the board. This was the case in my case.

Apparently, the cause of the malfunction was the failure of the UC3842BN (U1) ShI controller. This, in turn, led to an increase in the consumed current, and the resistor R010 burned out from a sharp overload. SMD resistors in the FQP4N90C MOSFET circuits played the role of a fuse and, most likely, thanks to them, the transistor remained intact.

As you can see, the whole switching power supply unit on the UC3842BN (U1) has failed. And it feeds all the main units of the welding inverter. Including soft start relay. Therefore, welding did not show any "signs of life."

As a result, we have a bunch of "little things" that need to be replaced in order to revive the unit.

After replacing the indicated elements, the welding inverter turned on, the display showed the value of the set current, the cooling cooler clinked.

For those who want to independently study the device of the welding inverter - the complete schematic diagram of "Resant SAI-250PN".

Repair of welding inverters, despite its complexity, in most cases can be done independently. And if you are well versed in the design of such devices and have an idea of ​​what is more likely to fail in them, you can successfully optimize the costs of professional service.

Replacement of radio components in the process of repairing a welding inverter

The main purpose of any inverter is to generate a constant welding current, which is obtained by rectifying a high-frequency alternating current. The use of a high-frequency alternating current, converted by means of a special inverter module from a rectified mains supply, is due to the fact that the strength of such a current can be effectively increased to the required value using a compact transformer. It is this principle underlying the operation of the inverter that allows such equipment to have compact dimensions with high efficiency.

Functional diagram of the welding inverter

The welding inverter circuit, which determines its technical characteristics, includes the following main elements:

  • a primary rectifier unit, the basis of which is a diode bridge (the task of such a unit is to rectify an alternating current supplied from a standard electrical network);
  • an inverter unit, the main element of which is a transistor assembly (it is with the help of this unit that the direct current supplied to its input is converted into an alternating current, the frequency of which is 50–100 kHz);
  • a high-frequency step-down transformer, on which, due to a decrease in the input voltage, the output current is significantly increased (due to the principle of high-frequency transformation, a current can be generated at the output of such a device, the strength of which reaches 200–250 A);
  • output rectifier, assembled on the basis of power diodes (the task of this block of the inverter includes rectifying an alternating high-frequency current, which is necessary for performing welding work).

The welding inverter circuit contains a number of other elements that improve its operation and functionality, but the main ones are the ones listed above.

Repair of an inverter-type welding machine has a number of features, which is explained by the complexity of the design of such a device. Any inverter, unlike other types of welding machines, is electronic, which requires specialists involved in its maintenance and repair to have at least basic radio engineering knowledge, as well as skills in handling various measuring instruments - a voltmeter, digital multimeter, oscilloscope, etc. ...

In the process of maintenance and repair, the elements that make up the welding inverter circuit are checked. This includes transistors, diodes, resistors, zener diodes, transformer and choke devices. The peculiarity of the design of the inverter is that very often during its repair it is impossible or very difficult to determine the failure of which particular element was the cause of the malfunction.

A sign of a burnt out resistor may be a small carbon deposit on the board, which is difficult to distinguish with an inexperienced eye.

In such situations, all the details are checked sequentially. To successfully solve such a problem, it is necessary not only to be able to use measuring instruments, but also to be quite familiar with electronic circuits. If you do not have such skills and knowledge at least at the initial level, then repairing a welding inverter with your own hands can lead to even more serious damage.

Read also:  DIY repair of the tractor engine t 25

Realistically assessing their strengths, knowledge and experience and deciding to undertake independent repair of inverter-type equipment, it is important not only to watch a training video on this topic, but also to carefully study the instructions, in which manufacturers list the most typical malfunctions of welding inverters, as well as ways to eliminate them.